Fount Distribution


This page shows some of the various schemes for founts of metal type, for English type setting. Some schemes for setting in other languages are shown on a separate page, as also is one version of schemes for small founts. The schemes below show the quantity (or weight) of each character that is provided by founders. How the type then fits into a case is shown either as Quantity in a Case, or as one of the many Type Lays available.

MacKellar (1870) gave the bookwork scheme with 3000 m, shown below, but other sources give schemes that have differing proportions of many of the characters, eg Smith (1755) shows two schemes for a 500lb fount, one having 3000 m and the other 2000 m, and Southward (1933) shows a 1000lb fount having 4200 m. These, and some other, distributions are shown at the end of this page, with quantities reduced as if for 20lb of type (ie in theory sufficient to set an area of at least 6x8 inches (48 lines of 36 pica in 12pt). The original schemes can be found by multiplying or dividing each character quantity by the appropriate factor.
Full Bill of Type - 800lbs Pica (ie 12pt)
(MacKellar: The American Printer (5th ed 1870). Quantities are numbers of type)
a8500 t9000 ,4500 11300 A600 T650 A300 T326
b1600 u3400 ;800 21200 B400 U300 B200 U150
c3000 v1200 :600 31100 C500 V300 C250 V150
d4400 w2000 .2000 41000 D500 W400 D250 W200
e12000 x400 -1000 51000 E600 X180 E300 X90
f2500 y2000 ?200 61000 F400 Y300 F200 Y150
g1700 z200 !150 71000 G400 Z80 G200 Z40
h6400 ae100 '700 81000 H400 AE40 H200 AE20
i8000 oe60 (300 91000 I800 OE30 I400 OE15
j400 ff400 [150 01300 J300 &200 J150   
k800 fi500 *100    K300    K150   
l4000 fl200 ¦100 à200 L500    L250   
m3000 ffi150 ¦¦100 â200 M400    M200   
n8000 ffl100 §100 é200 N400    N200   
o8000    ||100 ê200 O400    O200   
p1700    100 other accents P400 thick18000 P200 em2500
q500   --150 (each)100 Q180 mid8000 Q90 en5000
r6200   ---100   R400 thin8000 R200 large quads
s8000   ----60   S500 hair3000 S250  80lbs


In the tables that follow, ¦ represents a single dagger and ¦¦ represents double dagger. Fractions are shown as 1/2 and small caps are A B etc. The ... are dot leaders, and --- are em rules (dashes).
 
Full Bill of Type - 1000lbs
(Southward: Modern Printing (6th ed 1933). The quantities shown are in ounces)
a768 t608 ,240 180 A96 T88 A32 T29
b160 u368 ;44 268 B56 U52 B19 U17
c256 v128 :32 356 C72 V48 C24 V16
d400 w288 .120 456 D80 W88 D27 W29
e1040 x40 -72 556 E88 X32 E29 X11
f160 y216 ?14 656 F56 Y48 F19 Y16
g176 z16 !8 756 G64 Z14 G21 Z5
h640 ae12 '32 856 H70 AE12 H23 AE4
i448 oe9 (24 956 I72 OE10 I24 OE3.5
j24 ff44 [14 080 J36    J12   
k80 fi54 *12    K48 ... leaders68 K16 4 em528
l224 fl22 ¦10 à12 L76 (1,2,3 em)each L25 3 em528
m448 ffi32 ¦¦10 â12 M76 Rules:  M26 2 em544
n832 ffl22 §10 é12 N64 -11 N21 em384
o828    ||10 ê12 O60 --44 O20 en384
p176 {10 12 all i accents P58 ---44 P19 thick1072
q48 £ 18 @9 (each)6 Q32 ----44 Q11 mid384
r480 fist12 per9 all other accents R64 -----44 R21 thin256
s576 lb9 /4 (each)8 S64 terminal9 S21 hair56

The above bill is given by Southward: Modern Printing (6th edition 1933, edited by Whetton). The ct and various long s ligatures are extra, as are long and short accented vowels, and ê ø ñ etc.. Southward does include 12oz of 3em brace, and 13oz of 4em brace (the brace shown above being 2em), and also middle and the two end terminals for em rules (at 9 oz each) - to form a pieced brace. However, he omits the & and &.

Unfortunately, one cannot simply divide by 10 an 800lb scheme which has been proportioned by weight, to arrive at an 80lb scheme (say). There is considerably more metal in a character m than in a character i, for example. Thus a Monotype Times New Roman m is cast on 18 units, being full width, but the i is cast on 6 units, so one gets three i for the weight of one m. Most founders sell by weight, not character quantity, and so the distribution of characters changes both with actual type face, and type size.

An alternative distribution is given by American Type Founders: 1923 Specimen Book, for an 80lb font of body type. Their 20lb font is simply a quarter of the 80lb font, and breaks down as 40oz caps, 12oz small caps, 17oz points (punctuation), 16oz figures, 235oz lower case, which should easily fit an English double or U.S. job case. Similarly a 40lb font is half the 80lb quantity, and might fit a pair of upper and lower cases, although the 29lb 6oz of lower case characters would be a tight fit.

In the figures for the 80lb fount below, those in parentheses are additional to the 80lb fount, and are the strength appropriate to a 100lb fount.
80lbs Font of Body Type
(ATF 1923. The quantities shown are in ounces)
a70 t60 ,24 18 A T9 A T
b16 u34 ;3 2 B5 U5 B U
c30 v14 :2 3 C V C2 V1
d48 w26 .16 45 D W7 D2 W2
e104 x5 -9 5 E10 X2 E X¾
f17 y20 ?2 65 F5 Y F Y
g20 z4 !2 75 G Z2 G Z½
h56 ae1 '4 85 H AE¾ H2 AE¼
i44 oe1 (2 95 I6 OE¾ I OE¼
j5 ff4 [1 010 J    J   
k8 fi5 *(2) $2 K4 ¢(½) K quads
l224 fl22 ¦(1) ¼(6) L6 %(2) L2 3 em(68)
m42 ffi4 ¦¦(¾) ½(3) M Rules:  M 2 em(66)
n70 ffl3 §(¾) ¾(2) N -(2) N em(26)
o68    ||(¾) Leaders O --(3) O en(36)
p22 {(1½) (¾) en ...(4) P6 ---(3) P thick(96)
q5 £ ½ @(6) em ...(12) Q ----(3) Q¾ mid(16)
r53 fist(2) per(3) 2em ...(32) R8 -----(3) R thin(10)
s54 lb(3) a/c(1½) 3em ...(32) S8 braces(3½) S hair(2)

The following is an attempt to show various distributions, as if for 20lbs of 12pt type.

Note that these schemes will not be as accurate as the full-size originals, because no account has been taken of any necessary re-proportioning of quantities as founts change size - eg it does not follow that in a quarter size fount, every character quantity should be a quarter of the original, or that two 10lb founts added together should simply be twice the quantity of each character, and indeed the capitals and small caps are probably overstated for this very reason in the adapted Monotype and Riscatype distributions shown.

Note also that these founts are for bookwork, ie continuous text setting. Jobbing founts, for setting cards, posters, fliers, etc. have for example a larger proportion of capitals (but usually relate to type sizes larger than 12pt). Monotype show the same lower case Jobbing quantities as for Bookwork, but double the figures and some points, and double or treble the caps. Founders often box caps and lower case separately, so in practice one could purchase proportionately more or less of each, as required.
Possible schemes for 20lbs of 12pt (or Pica) type
(Quanties are numbers of each type)
 SwdMcKMonRisSmi     SwdMcKMonRisSmi     SwdMcKMonRisSmi 
a240213259210280(300) A1915287032(34) A1282830   
b5340638464(48) B1210282820(18) B75912   
c1077511911496(60) C1313214624(18) C961420   
d133110147132160(192) D1513213820(18) D961716   
e373300413282480(520) E2015428432(28) E1284636   
f80638411480(100) F1210213220(18) F851114   
g5343638464(52) G1210283224(24) G75914   
h160160175138240(250) H1210353824(22) H852116   
i240200259210240(160) I2420357032(40) I12102930   
j1310215424(12) J88211820(20) J54410   
k2120285440(36) K88141820(18) K54410   
l133100147138120(120) L1513284620(24) L861820   
m807591114120(80) M1710633820(28) M851516   
n213200231210240(260) N1510287024(20) N952630   
o213200231210240(280) O1510287024(20) O952630   
p6443708464(40) P1310283824(32) P751016   
q1613213624(12) Q55141212(12) Q3246   
r187155203210200(240) R1310287024(24) R952330   
s213200231210216(196) S1613427024(32) S962730   
t267225294210280(300) T2116427032(40) T1183430   
u12085133114120(80) U98213820(16) U641516   
v4030425440(40) V98141820(20) V54610   
w6750708464(80) W1510282820(24) W751012   
x1310213616(16) X5514126(12) X3246   
y6750708464(80) Y98212820(12) Y54912   
z85143616(8) Z4214128(4) Z3136   
ae537 12(6) AE3114* 4(4) AE2114*   
oe327 8(4) OE3114* 2(2) OE217*   
ff111011 20(12) &8528*1216(8) £5 21*6  
fi131314 20(16) .8050140*7080(80) 11933352448(60)
fl8511 8(6) ,120113175*70160(200) 21630212048(52)
ffi8411 8(8) :161521*1240(24) 31628212048(52)
ffl5311 8(4) ;212028*1240(40) 41325142040(44)
em8063350* 80(80) ?85111220(16) 51325142040(44)
en160125175 200(200) !5471212(8) 61325142040(48)
thick530450700 600(480) (12842* 12(12) 71325142040(44)
mid214300350 400(400) '2118353240(32) 81325142040(40)
thin214200350 200(320) -2725351840(40) 91325282040(40)
hair8075175* 80(80) [6421* 8(8) 01933422048(64)
é à5514*each ...3 42*    ½ etc4 7*each 
others337*each ---13421*    others1 7*each 
*7321* 8(8)refs each3314* 8(4) ( but nb. some refs are 2 or 12 each)
Smith also includes the long s and its ligatures. Long s (shown here |) is 96 (included above in the figure for s). In addition: |t=32 (32) |h=24 (24) |i=20 (20) |l=8 (6) |b=8 (6) |k=8 (4) and also ct=12 (12)
*Monotype figures are distorted by the multiplication, eg their basic 74a 8A fount includes only 8& 50, 6£ 4AE 4AE etc.
Some distributions also include 2lbs of large quads (Smith shows 4em=26oz, 3em=19oz, 2em=6oz).
Sources are:
Swd = Southward (1887): 750lb fount, all quantities then divided by 37.5
McK = MacKellar (1870): 800lb fount, all quantities then divided by 40
Mon = Monotype (1970 and earlier): 1000 l.c. character fount then multiplied by 3.5
Ris = Riscatype (1960s): two 10lb founts added together
Smi = Smith (1755): 500lb traditional fount then divided by 25
and with his improved distribution shown in brackets
It is interesting to note the differences in the order of frequency of the characters. Thus for the lower case:

e a i n o r s t c d h l m u b f g p w y j k v q x z (Stephenson Blake 1989)
e a i n o r s c d h l m u b f g p t w y j k v q x z (Startype 1979)
e t a i n o s r h d l u c m f p w y b g v k j q x z (Monotype 1970s)
e a i n o r s t h l d c f m u b g p w y j k v q x z (Riscatype 1960s)
e t a o i s n u h r l w m c f d y g p b v k j z x q (Intertype 1930s)
e a i n o r s t h l d c m u b f g p w y j k v q x z (Southward iro ATF 1933)
e t a i n o s r h d l u c f m w y p b g v k q j x z (Southward 1887)
e t a i n o s h r d l u c m f w y g p b v k q j x z (MacKellar 1870)
e t a i n o s h r d l u c m f w y g p b v k j x q z (Savage 1841, from Caslon)
e t a i n o s h r d l u c m f w y g p b v k q j x z (Hansard 1825)
e a s i o t r n d l u h c m w y p g f b v k q j x z (Stanhope c1800)
e a t o h n r d i l f s m u w y c g b p v k x j q z (Smith 1755 improved)
e a t h i n o r d l m s u c f b g p w y k v j q x z (Smith 1755 traditional)

The above distributions are for setting English, rather than Dutch, Spanish, French, etc., which would always have different orders of frequency. For example:

e n d a o r t i s g h l k m u v b c z w ij f p j y x q (Dutch distribution for a 4500a fount)
e n a b d o r i t s l g h m u v ij c f k j p w y z q x (Dutch distribution for 12a fount, Stichting Lettergieten 2001)
e s t a n r i u o l d p c m v q b g f h x y j z k w (French distribution within 18,000 ens of Cicéro, Lefevre 1880)
e s i r t a n u l o d c m p q b f g h v j x y z k w (French distribution for a 5000a fount, Lefevre 1880)
e n r i s t a d h u l c g m o b f w k z v p ß j x q y (German (Antiqua) distribution for 3000a fount, Genzmer 1961)

but note that in the earlier schemes, the ligatures make a difference, ie MacKellar has fi equal to q and ff equal to x (and above z). Hansard has fi equal to q, ff to j, fl to z (and é above z, and à â ê equal to z). Smith also includes long s ligatures in his schemes, which for example would move s above i in his traditional scheme, if the fount had no ligatures. The Dutch scheme has ij as shown, but also é above y and ó à è fl ä ö ü fi í ì above x and ò û â above q. Similarly, in the French scheme, é is above p, fi above y, fl and ç above k, etc., but also note how few k and w were in use at that time. In the German scheme, ü and ä are above j and ö is above q.

For some fount schemes currently in use in U.S.A., look at the AAPA page of Type Lore.
And for some basic information about buying a fount of type, read Fred Williams' APA article from Type & Press.





Other empty cases
ie with the boxes left blank
Other type layouts
ie with characters assigned to boxes
Full Index of layoutsGlossary of terms usedSources of the layoutsIntroduction
Quantities in a fount of typeQuantities in a case of type
Notes about Job
and Double Cases
Notes about Upper casesNotes about Lower casesAlembic home page
This page was written by David Bolton and last updated 16 March 2009.